A.\[\frac{{{a^3}\sqrt 2 }}{4}\]
B. \[\frac{{3{a^3}\sqrt 2 }}{8}\]
C. \[\frac{{9{a^3}\sqrt 2 }}{8}\]
D. \[\frac{{27{a^3}\sqrt 2 }}{8}\]
Gọi D là trung điểm của AB. Trong (CC′D) kẻ \[OH \bot CC' \Rightarrow OH = a\]
\(\left. {\begin{array}{*{20}{c}}{CD \bot AB}\\{C\prime O \bot AB}\end{array}} \right\} \Rightarrow AB \bot (CC\prime D) \Rightarrow AB \bot CC\prime \)
Trong (ABC), qua O kẻ\[EF//AB\left( {E \in BC;F \in AC} \right)\]
Ta có: \(\left. {\begin{array}{*{20}{c}}{EF \bot CC\prime }\\{OH \bot CC'}\end{array}} \right\} \Rightarrow CC\prime \bot (EFH) \Rightarrow CC\prime \bot HE;CC\prime \bot HF\)
Ta có:
\(\left. {\begin{array}{*{20}{c}}{(ACC\prime A\prime ) \cap (BCC\prime B\prime ) = CC\prime }\\{(ACC\prime A\prime ) \supset HF \bot CC\prime }\\{(BCC\prime B\prime ) \supset HE \bot CC\prime }\end{array}} \right\} \Rightarrow ((ACC\prime \widehat {A\prime );(B}CC\prime B\prime )) = (H\widehat {F;H}E) = {90^0}\)
\[ \Rightarrow HE \bot HF\]
\[ \Rightarrow {\rm{\Delta }}HEF\] vuông tại H
\[{\rm{\Delta }}HCE = {\rm{\Delta }}HCF\left( {c.g.v - c.h} \right) \Rightarrow HE = HF \Rightarrow {\rm{\Delta }}HEF\] vuông cân tại H\[ \Rightarrow EF = 2HO = 2a\]
Ta có:\[\frac{{EF}}{{AB}} = \frac{{CO}}{{CD}} = \frac{2}{3} \Rightarrow AB = \frac{3}{2}EF = \frac{3}{2}.2a = 3a\]
\[ \Rightarrow {S_{{\rm{\Delta }}ABC}} = \frac{{A{B^2}\sqrt 3 }}{4} = \frac{{9{a^2}\sqrt 3 }}{4}\]
\[CD = \frac{{AB\sqrt 3 }}{2} = \frac{{3a\sqrt 3 }}{2} \Rightarrow CO = \frac{2}{3}AB = \frac{2}{3}.\frac{{3a\sqrt 3 }}{2} = a\sqrt 3 \]
\[C'O \bot \left( {ABC} \right) \Rightarrow C'O \bot CO \Rightarrow {\rm{\Delta }}CC'O\] vuông tại O
\[ \Rightarrow \frac{1}{{O{H^2}}} = \frac{1}{{C'{O^2}}} + \frac{1}{{C{O^2}}} \Rightarrow \frac{1}{{C'{O^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{C{O^2}}} = \frac{1}{{{a^2}}} - \frac{1}{{3{a^2}}} = \frac{2}{{3{a^2}}} \Rightarrow C'O = \frac{{\sqrt 6 }}{2}a\]
Vậy\[{V_{ABC.A'B'C'}} = C'O.{S_{{\rm{\Delta }}ABC}} = \frac{{a\sqrt 6 }}{2}.\frac{{9{a^2}\sqrt 3 }}{4} = \frac{{27{a^3}\sqrt 2 }}{8}\]
Đáp án cần chọn là: D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247