A.\[\frac{{8a}}{3}\]
B. \[\sqrt 2 a\]
C. \[2\sqrt 2 a\]
D. \[\frac{{4a}}{3}\]
Giả sử thiết diện qua trục của hình nón là \[\Delta ABC\] với A là đỉnh nón, BC là đường kính đáy nón.
Gọi H là tâm đường tròn đáy của hình nón, O1,O2 lần lượt là tâm của mặt cầu lớn và nhỏ, D1,D2 lần lượt là tiếp điểm của AC với (O1) và (O2).
Vì O1D1//O2D2 (cùng vuông góc với AC) nên theo hệ thức Ta – let ta có:
\[ \Rightarrow \frac{{A{O_2}}}{{A{O_1}}} = \frac{{{O_2}{D_2}}}{{{O_1}{D_1}}} = \frac{a}{{2a}} = \frac{1}{2} \Rightarrow {O_2}\] là trung điểm của
\[A{D_1} \Rightarrow A{O_1} = 2{O_1}{O_2} = 2\left( {a + 2a} \right) = 6a\]
\[ \Rightarrow AH = A{O_1} + {O_1}H = 6a + 2a = 8a\]
Xét tam giác vuông \[A{O_1}{D_1}\] có: \[A{D_1} = \sqrt {A{O_1}^2 - {O_1}{D_1}^2} = \sqrt {36{a^2} - 4{a^2}} = 4\sqrt 2 a\]Dễ thấy:
\[{\rm{\Delta }}A{O_1}{D_1} \sim {\rm{\Delta }}ACH\,\,\left( {g.g} \right) \Rightarrow \frac{{HC}}{{{O_1}{D_1}}} = \frac{{AH}}{{A{D_1}}} \Rightarrow HC = \frac{{{O_1}{D_1}.AH}}{{A{D_1}}} = \frac{{2a.8a}}{{4\sqrt 2 a}} = 2\sqrt 2 a = r\]
Đáp án cần chọn là: C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247