A.\[h = R\sqrt 3 \]
B. \[h = R\sqrt 2 \]
C. \[h = \frac{{4R}}{3}\]
D. \[h = \frac{{2R}}{3}\]
Ta có: Gọi bán kính (C) với tâm là I là r thì dễ có S phải thuộc OI và :
\[\begin{array}{*{20}{l}}{OI = \sqrt {{R^2} - {r^2}} \to h = \sqrt {{R^2} - {r^2}} + R}\\{V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi {r^2}(\sqrt {{R^2} - {r^2}} + R)}\end{array}\]
Tới đây ta sẽ khảo sát hàm số:
\[f(r) = {r^2}(\sqrt {{R^2} - {r^2}} + R)\]
\[ = {r^2}\sqrt {{R^2} - {r^2}} + {r^2}R\]
\[ \Rightarrow f\prime (r) = ({r^2}\sqrt {{R^2} - {r^2}} + {r^2}R)\prime \]
\[ = \left( {{r^2}\sqrt {{R^2} - {r^2}} } \right)' + ({r^2}R)\prime \]
\[ = ({r^2})\prime \sqrt {{R^2} - {r^2}} + {r^2}(\sqrt {{R^2} - {r^2}} )\prime + 2rR\]
\[ = 2r\sqrt {{R^2} - {r^2}} + {r^2}.\frac{{ - 2r}}{{2\sqrt {{R^2} - {r^2}} }} + 2rR\]
\[ = 2r\sqrt {{R^2} - {r^2}} - \frac{{{r^3}}}{{\sqrt {{R^2} - {r^2}} }} + 2rR\]
\[ = r(2\sqrt {{R^2} - {r^2}} - \frac{{{r^2}}}{{\sqrt {{R^2} - {r^2}} }} + 2R)\]
\[\begin{array}{l}f'(r) = 0 \Leftrightarrow 2\sqrt {{R^2} - {r^2}} + 2{\rm{R}} - \frac{{{r^2}}}{{\sqrt {{R^2} - {r^2}} }} = 0\\ \Leftrightarrow 2({R^2} - {r^2}) - {r^2} + 2{\rm{R}}\sqrt {{R^2} - {r^2}} = 0\end{array}\]
\[ \Leftrightarrow {(2{{\rm{R}}^2} - 3{{\rm{r}}^2})^2} = {(2{\rm{R}}\sqrt {{R^2} - {r^2}} )^2}\]
\[ \Leftrightarrow {r^2} = \frac{8}{9}{R^2} \to h = \frac{{4{\rm{R}}}}{3}.\]
Đáp án cần chọn là: C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247