Cho mặt cầu tâm O bán kính R. Xét mặt phẳng (P) thay đổi cắt mặt cầu theo giao tuyến là đường tròn (C). Hình nón N có đỉnh S nằm trên mặt cầu, có đáy là đường tròn (C) và có chiều...

Câu hỏi :

Cho mặt cầu tâm O  bán kính R. Xét mặt phẳng (P) thay đổi cắt mặt cầu theo giao tuyến là đường tròn (C). Hình nón N có đỉnh S nằm trên mặt cầu, có đáy là đường tròn (C) và có chiều cao h(h > R). Tìm hh để thể tích khối nón được tạo nên bởi (N) có giá trị lớn nhất.

A.\[h = R\sqrt 3 \]

B. \[h = R\sqrt 2 \]

C. \[h = \frac{{4R}}{3}\]

D. \[h = \frac{{2R}}{3}\]

* Đáp án

* Hướng dẫn giải

Ta có: Gọi bán kính (C) với tâm là I là r thì dễ có S phải thuộc OI và :

\[\begin{array}{*{20}{l}}{OI = \sqrt {{R^2} - {r^2}} \to h = \sqrt {{R^2} - {r^2}} + R}\\{V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi {r^2}(\sqrt {{R^2} - {r^2}} + R)}\end{array}\]

Tới đây ta sẽ khảo sát hàm số:

\[f(r) = {r^2}(\sqrt {{R^2} - {r^2}} + R)\]

\[ = {r^2}\sqrt {{R^2} - {r^2}} + {r^2}R\]

\[ \Rightarrow f\prime (r) = ({r^2}\sqrt {{R^2} - {r^2}} + {r^2}R)\prime \]

\[ = \left( {{r^2}\sqrt {{R^2} - {r^2}} } \right)' + ({r^2}R)\prime \]

\[ = ({r^2})\prime \sqrt {{R^2} - {r^2}} + {r^2}(\sqrt {{R^2} - {r^2}} )\prime + 2rR\]

\[ = 2r\sqrt {{R^2} - {r^2}} + {r^2}.\frac{{ - 2r}}{{2\sqrt {{R^2} - {r^2}} }} + 2rR\]

\[ = 2r\sqrt {{R^2} - {r^2}} - \frac{{{r^3}}}{{\sqrt {{R^2} - {r^2}} }} + 2rR\]

\[ = r(2\sqrt {{R^2} - {r^2}} - \frac{{{r^2}}}{{\sqrt {{R^2} - {r^2}} }} + 2R)\]

\[\begin{array}{l}f'(r) = 0 \Leftrightarrow 2\sqrt {{R^2} - {r^2}} + 2{\rm{R}} - \frac{{{r^2}}}{{\sqrt {{R^2} - {r^2}} }} = 0\\ \Leftrightarrow 2({R^2} - {r^2}) - {r^2} + 2{\rm{R}}\sqrt {{R^2} - {r^2}} = 0\end{array}\]

\[ \Leftrightarrow {(2{{\rm{R}}^2} - 3{{\rm{r}}^2})^2} = {(2{\rm{R}}\sqrt {{R^2} - {r^2}} )^2}\]

\[ \Leftrightarrow {r^2} = \frac{8}{9}{R^2} \to h = \frac{{4{\rm{R}}}}{3}.\]

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Diện tích hình nón, thể tích khối nón !!

Số câu hỏi: 28

Copyright © 2021 HOCTAP247