Cho hình vuông ABCD cạnh bằng 2. Gọi M là trung điểm AB. Cho tứ giác AMCD và các điểm trong của nó quay quanh trục AD ta được một khối tròn xoay. Tính thể tích khối tròn xoay đó.

Câu hỏi :

Cho hình vuông ABCD cạnh bằng 2. Gọi M là trung điểm AB. Cho tứ giác AMCD và các điểm trong của nó quay quanh trục AD ta được một khối tròn xoay. Tính thể tích khối tròn xoay đó.

A.\[\frac{{7\pi }}{3}\]

B. \[\frac{{7\pi }}{6}\]

C. \[\frac{{14\pi }}{3}\]

D. \[\frac{{14\pi }}{9}\]

* Đáp án

* Hướng dẫn giải

Cho hình vuông ABCD cạnh bằng 2. Gọi M là trung điểm AB. Cho tứ giác AMCD và các điểm trong của nó quay quanh trục AD ta được một khối tròn xoay. Tính thể tích khối tròn xoay đó. (ảnh 1)

Kéo dài CM cắt DA tại E. Quay hình thang vuông AMCD quanh trục AD ta được hình nón cụt như hình vẽ.

Quay tam giác EDC quanh trục ED ta được hình nón.

Dễ thấy \[{V_{nc}} = {V_1} - {V_2}\] V1V1 là thể tích khối nón đỉnh E, bán kính đáy DC = 2DC = 2 và V2 là thể tích khối nón đỉnh E, bán kính đáy AM = 1

Có\[\frac{{EA}}{{ED}} = \frac{{AM}}{{DC}} = \frac{1}{2} \Rightarrow EA = AD = 2 \Rightarrow ED = 4\]

\[ \Rightarrow {V_1} = \frac{1}{3}\pi D{C^2}.ED = \frac{1}{3}\pi {.2^2}.4 = \frac{{16\pi }}{3}\]

\[{V_2} = \frac{1}{3}\pi A{M^2}EA = \frac{1}{3}\pi {.1^2}.2 = \frac{{2\pi }}{3}\]

Vậy \[V = {V_1} - {V_2} = \frac{{16\pi }}{3} - \frac{{2\pi }}{3} = \frac{{14\pi }}{3}\]

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Diện tích hình nón, thể tích khối nón !!

Số câu hỏi: 28

Copyright © 2021 HOCTAP247