A.\[x + z + 3 - 2\sqrt 2 = 0\]
B. \[y + z - 3 - 2\sqrt 2 = 0\]
C. \[x + y + 3 + 2\sqrt 2 = 0\]
D. \[y + z + 3 + 2\sqrt 2 = 0\]
(S) có tâm\[I(1; - 1; - 2);R = 2\]
Vì (P) song song với \[{{\rm{\Delta }}_1},{{\rm{\Delta }}_2}\] có vtcp tương ứng là\[\overrightarrow {{u_1}} = \left( {2; - 1;1} \right);\overrightarrow {{u_2}} = \left( { - 1;1; - 1} \right)\]
ta có \[\overrightarrow {{n_P}} = [\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} ] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&1\\1&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&2\\{ - 1}&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&{ - 1}\\{ - 1}&1\end{array}} \right|} \right) = (0;1;1)\]
Gọi\[(P):y + z + d = 0\]
\[d(I;P) = \frac{{| - 1 - 2 + d|}}{{\sqrt 2 }} = \frac{{|d - 3|}}{{\sqrt 2 }}\]
\(\begin{array}{l} \Rightarrow \frac{{|d - 3|}}{{\sqrt 2 }} = 2 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{d - 3 = 2\sqrt 2 }\\{d - 3 = - 2\sqrt 2 }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{d = 3 + 2\sqrt 2 }\\{d = 3 - 2\sqrt 2 }\end{array}} \right.\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{y + z + 3 + 2\sqrt 2 = 0}\\{y + z + 3 - 2\sqrt 2 = 0}\end{array}} \right.\end{array}\)
Đáp án cần chọn là: D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247