A.\[x - 2y + 3z - 2 = 0\]
B. \[x - 2y - 3z - 2 = 0\]
C. \[x + 2y - 3z - 6 = 0\]
D. \[2x - y - 1 = 0\]
\[(S):{x^2} + {y^2} + {z^2} - 2x + 4y - 2z - 3 = 0\]có tâm I(1;−2;1) và bán kính R=3.
Do (P) đi qua A,B và cắt (S) theo giao tuyến là đường tròn có bán kính lớn nhất nên (P) đi qua tâm I của (S)
Ta có:\[\overrightarrow {IA} = \left( { - 1;1; - 1} \right),\overrightarrow {IB} = \left( {0;3; - 2} \right);\overrightarrow {{n_{(P)}}} = \left[ {\overrightarrow {IA} ,\overrightarrow {IB} } \right] = \left( {1; - 2; - 3} \right)\]
Phương trình mặt phẳng\[(P):1(x--0)--2(y + 1)--3(z--0) = 0\]hay\[x--2y--3z--2 = 0\]
Đáp án cần chọn là: B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247