Trong không gian với hệ tọa độ Oxyz, cho mặt cầu

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{x^2} + {y^2} + {z^2} + 2x - 4y + 6z + 5 = 0\]. Tiếp diện của (S) tại điểm M(−1;2;0) có phương trình là:

A.2x+y=0                 

B.x=0 

C.y=0

D.z=0

* Đáp án

* Hướng dẫn giải

Mặt cầu (S) có tâm I(−1;2;−3) và bán kính R=3

Ta có : \[M( - 1;2;0) \in \left( S \right)\]

Gọi \[\left( \alpha \right)\]là mặt phẳng tiếp diện của (S)  tại M.

Khi đó \[\left( \alpha \right)\]  đi qua M và nhận\[\overrightarrow {IM} \left( {0;0;3} \right)\] làm véctơ pháp tuyến

Vậy\[\left( \alpha \right):0(x + 1) + 0(y - 2) + 3(z - 0) = 0 \Leftrightarrow z = 0\]

Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Các bài toán về mặt phẳng và mặt cầu !!

Số câu hỏi: 21

Copyright © 2021 HOCTAP247