Trong không gian Oxyz cho 3 véc tơ:

Câu hỏi :

Trong không gian Oxyz cho 3 véc tơ: \[\overrightarrow a \left( {4;2;5} \right),\overrightarrow b \left( {3;1;3} \right),\overrightarrow c \left( {2;0;1} \right)\]. Kết luận nào sau đây đúng 

A.\[\vec c = \left[ {\vec a,\vec b} \right]\]

B.3 véc tơ cùng phương.    

C.3 véctơ đồng phẳng.          

D.3 véctơ không đồng phẳng.

* Đáp án

* Hướng dẫn giải

Tính\[\left[ {\vec a,\vec b} \right] = \left( {\left| {\begin{array}{*{20}{c}}2&5\\1&3\end{array}} \right|;\left| {\begin{array}{*{20}{c}}5&4\\3&3\end{array}} \right|;\left| {\begin{array}{*{20}{c}}4&2\\3&1\end{array}} \right|} \right) = \left( {1;3; - 2} \right)\]Suy ra loại A

Tính \[\left[ {\vec a,\vec b} \right].\vec c = \left( {1;3; - 2} \right).\left( {2;0;1} \right) = 0\] Suy ra\[\vec a,\vec b,\vec c\]đồng phẳng.

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài toán về điểm và vectơ !!

Số câu hỏi: 43

Copyright © 2021 HOCTAP247