Trong không gian với hệ tọa độ Oxyz, cho hai vectơ

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, cho hai vectơ \(\overrightarrow a \)và \(\overrightarrow b \)thỏa mãn \(\left| {\overrightarrow a } \right| = 2\sqrt 3 ,\left| {\overrightarrow b } \right| = 3\)\(\left( {\overrightarrow a ,\overrightarrow b } \right) = {30^0}\). Độ dài của vectơ \(\left[ {5\overrightarrow a , - 2\overrightarrow b } \right]\) bằng:

A.\(3\sqrt 3 \).

B.9.

C.\(30\sqrt 3 \)

D.90.

* Đáp án

* Hướng dẫn giải

Chú ý rằng\[\left( {5\vec a, - 2\vec b} \right) = {180^0} - \left( {\vec a,\vec b} \right) = {150^0}.\]

Sử dụng công thức\[\left| {\left[ {m\vec a,n\vec b} \right]} \right| = \left| {m.n} \right|.\left| {\vec a} \right|.\left| {\vec b} \right|.\sin \left( {m\vec a,n\vec b} \right)\]ta được\[\left| {\left[ {5\vec a, - 2\vec b} \right]} \right| = \left| {5.\left( { - 2} \right)} \right|.2\sqrt 3 .3.\sin {150^0} = 30\sqrt 3 .\]

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài toán về điểm và vectơ !!

Số câu hỏi: 43

Copyright © 2021 HOCTAP247