Trang chủ Đề thi & kiểm tra Khác Bài toán về điểm và vectơ !! Trong không gian với hệ trục tọa độ Oxyz, cho...

Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;−1),B(2;−1;3),C(−3;5;1). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

Câu hỏi :

Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;−1),B(2;−1;3),C(−3;5;1). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

A.D(−2;8;−3) 

B.D(−4;8;−5)

C.D(−2;2;5)

D.D(−4;8;−3).

* Đáp án

* Hướng dẫn giải

Có\[\overrightarrow {AB} = \left( {2 - 1; - 1 - 2;3 + 1} \right) = \left( {1; - 3;4} \right)\]và\[\overrightarrow {DC} = ( - 3 - {x_D};5 - {y_D};1 - {z_D})\]

ABCD là hình bình hành khi và chỉ khi

\(\overrightarrow {AB} = \overrightarrow {DC} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 3 - {x_D} = 1}\\{5 - {y_D} = - 3}\\{1 - {z_D} = 4}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_D} = - 4}\\{{y_D} = 8}\\{{z_D} = - 3}\end{array}} \right.\)

Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài toán về điểm và vectơ !!

Số câu hỏi: 43

Copyright © 2021 HOCTAP247