Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;2;−1) , B(2;0;1). Tìm tọa độ điểm M nằm trên trục Ox sao cho :MA2+MB2 đạt giá trị bé nhất.

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, cho hai điểm  A(0;2;−1) , B(2;0;1). Tìm tọa độ điểm M nằm trên trục Ox sao cho :MA2+MB2 đạt giá trị bé nhất.

A.M(0;1;0)     

B.M(1;0;0)     

C.M(0;1;2)

D.M(−1;0;0)

* Đáp án

* Hướng dẫn giải

MM nằm trên trục Ox, giả sử M(m;0;0).

Ta có

\[\begin{array}{*{20}{l}}{MA = \sqrt {{{(m - 0)}^2} + {{(0 - 2)}^2} + {{(0 + 1)}^2}} = \sqrt {{m^2} + 5} }\\{MB = \sqrt {{{(m - 2)}^2} + {{(0 - 0)}^2} + {{(0 - 1)}^2}} = \sqrt {{{(m - 2)}^2} + 1} }\end{array}\]

Suy ra

\[M{A^2} + M{B^2} = {m^2} + 5 + {(m - 2)^2} + 1 = 2{m^2} - 4m + 10\]

\[ = 2({m^2} - 2m + 1) + 8 = 2{(m - 1)^2} + 8 \ge 8\]

\[\min (M{A^2} + M{B^2}) = 8 \Leftrightarrow m - 1 = 0 \Leftrightarrow m = 1\]

Vậy M(1;0;0)

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài toán về điểm và vectơ !!

Số câu hỏi: 43

Copyright © 2021 HOCTAP247