A.V=9
B.V=7
C.V=10
D.V=13
Ta có \[\overrightarrow {AB} = (1;1;1),\overrightarrow {AD} = (0; - 1;0)\]
\[ABCD.A'B'C'D'\]là hình hộp\[ \Rightarrow ABCD\]là hình bình hành. Khi đó ta có\[\overrightarrow {AD} = \overrightarrow {BC} \]
Giả sử\[C(x;y;z)\]. Ta có:\[\overrightarrow {BC} = (x - 2;y - 1;z - 2)\]
\(\overrightarrow {AD} = \overrightarrow {BC} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x - 2 = 0}\\{y - 1 = - 1}\\{z - 2 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 2}\\{y = 0}\\{z = 2}\end{array}} \right. \Rightarrow C(2;0;2)\)
Ta có\[\overrightarrow {AA'} = \overrightarrow {CC'} = \left( {2;5; - 7} \right),\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right] = (1;0; - 1)\]
Theo công thức tính thể tích ta có
\[{V_{ABCD.A'B'C'D}} = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right].\overrightarrow {AA'} } \right| = \left| {1.2 + 0.5 + \left( { - 1} \right).\left( { - 7} \right)} \right| = 9\]
Đáp án cần chọn là: A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247