Trong không gian với hệ tọa độ Oxyz, tìm tọa độ điểm A’ đối xứng với điểm

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, tìm tọa độ điểm A’ đối xứng với điểm \(A\left( { - 1;0;3} \right)\) qua mặt phẳng \(\left( P \right):x + 3y - 2z - 7 = 0\).

* Đáp án

* Hướng dẫn giải

Đáp án: \(A'\left( {1;6; - 1} \right)\)

Phương pháp giải:

Giả sử \[A'\left( {a;b;c} \right)\] là điểm đối xứng với điểm \[A\] qua mặt phẳng \[\left( P \right)\]. Khi đó, ta có: \[\left\{ {\begin{array}{*{20}{l}}{\overrightarrow {AA'} //\overrightarrow {{n_{\left( P \right)}}} }\\{I \in \left( P \right)}\end{array}} \right.\], với I là trung điểm của \[{\rm{AA'}}\].

Giải chi tiết:

Giả sử \[A'\left( {a;b;c} \right)\] là điểm đối xứng với điểm \[A\left( { - 1;0;3} \right)\] qua mặt phẳng \[\left( P \right):x + 3y - 2z - 7 = 0\]

Khi đó, ta có: \(\left\{ {\begin{array}{*{20}{l}}{\overrightarrow {AA'} //\overrightarrow {{n_{\left( P \right)}}} }\\{I \in \left( P \right)}\end{array}} \right.\), với I là trung điểm của \[{\rm{AA'}}\].

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\frac{{a + 1}}{1} = \frac{{b - 0}}{3} = \frac{{c - 3}}{{ - 2}}}\\{\left( {\frac{{a - 1}}{2}} \right) + 3.\frac{b}{2} - 2.\frac{{c + 3}}{2} - 7 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\frac{{a + 1}}{1} = \frac{b}{3} = \frac{{c - 3}}{{ - 2}}}\\{a + 3b - 2c = 21}\end{array}} \right.\)

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1}\\{b = 6}\\{c = - 1}\end{array}} \right.\)\( \Rightarrow A'\left( {1;6; - 1} \right)\).

Copyright © 2021 HOCTAP247