Tính limx→01+2x.1+3x3.1+4x4−1x
A.232
B.24
C.32
D.3
Ta có:
1+2x.1+3x3.1+4x4−1=1+2x−1+2x+1+2x.1+3x3−1+2x.1+3x3+1+2x.1+3x3.1+4x4−1=1+2x−1+1+2x1+3x3−1+1+2x.1+3x3.1+4x4−1
⇒limx→01+2x.1+3x3.1+4x4−1x=limx→01+2x−1x+limx→01+2x.1+3x3−1x+limx→01+2x.1+3x3.1+4x4−1x
Tính:
limx→01+2x−1x=limx→01+2x−11+2x+1x1+2x+1=limx→02xx1+2x+1=limx→021+2x+1=21+1=1
limx→01+2x.1+3x3−1x=limx→01+2x.1+3x3−11+3x32+1+3x3+1x.1+3x32+1+3x3+1=limx→01+2x.3xx.1+3x32+1+3x3+1=limx→031+2x1+3x32+1+3x3+1=3.11+1+1=3
limx→01+2x.1+3x3.1+4x4−1x
=limx→01+2x.1+3x3.1+4x4−11+4x43+1+4x42+1+4x4+1x.1+4x43+1+4x42+1+4x4+1
=limx→01+2x.1+3x3.4x1+4x4−11+4x43+1+4x42+1+4x4+1x.1+4x43+1+4x42+1+4x4+1
=limx→041+2x.1+3x31+4x43+1+4x42+1+4x4+1=4.1.11+1+1+1=1
Vậy limx→01+2x.1+3x3.1+4x4−1x=1+1+1=3
Đáp án cần chọn là: D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247