Xét tính tuần hoàn và tìm chu kì (nếu có) của hàm số trên.
A. Hàm tuần hoàn với chu kì T = 2π.
B. Hàm tuần hoàn với chu kì T = π.
C. Hàm tuần hoàn với chu kì T = 3π.
Bước 1: Tìm điều kiện xác định của hàm số
Điều kiện xác định
→D = R\
Bước 2: Chu kì của hàm số y = tan x và
Xét hàm số y = tan x là hàm tuần hoàn có chu kì T1 = π
Xét hàm số
Ta có
Chọn
Giá trị nhỏ nhất của T2 là 2π.
Ta thấy ∀x∈D; x + k2π∈D thì g(x + k2π) = g(x)
Vậy hàm số là hàm số tuần hoàn với chu kì T2 = 2π.
Bước 3: Chu kì của hàm số
Khi đó, hàm số là hàm tuần hoàn với chu kì T = 2π.
Đáp án cần chọn là: A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247