Một sợi dây kim loại dài a(cm) . Người ta cắt sợi dây đó thành hai đoạn, trong đó một đoạn có độ dài x(cm)

Câu hỏi :

Một sợi dây kim loại dài a(cm) . Người ta cắt sợi dây đó thành hai đoạn, trong đó một đoạn có độ dài x(cm) được uốn thành đường tròn và đoạn còn lại được uốn thành hình vuông a>x>0. Tìm x để hình vuông và hình tròn tương ứng có tổng diện tích nhỏ nhất.

Media VietJack

A. x=aπ+4cm

B. x=2aπ+4cm

C. x=πaπ+4cm

D. x=4aπ+4cm

* Đáp án

* Hướng dẫn giải

Do x là độ dài của đoạn dây cuộn thành hình tròn 0<x<a.Suy ra chiều dài đoạn còn lại là a − x.

Gọi r là bán kính của đường tròn. Chu vi đường tròn: 2πr=xr=x2π
Do đó diện tích hình tròn là: S1=π.r2=x24π

Chu vi hình vuông là axCạnh hình vuông là ax4Do đó diện tích hình vuông:

S2=ax42

Tổng diện tích hai hình:

S=x24π+ax42    =4x2+πax216π     =4+π.x22aπx+πa216π

Xét hàm số  Sx=4+π.x22aπx+πa216πta có:

S'x=24+π.x2aπ16π=4+π.xaπ8π

Cho S'x=04+πxaπ=0x=aπ4+πTa có BBT như sau :

Media VietJack

Suy ra hàm S chỉ có một cực trị và là cực tiểu tại x=aπ4+π

Do đó S đạt giá trị nhỏ nhất tại x=aπ4+π
Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giá trị lớn nhất và giá trị nhỏ nhất của hàm số !!

Số câu hỏi: 42

Copyright © 2021 HOCTAP247