Cho hai số thực x,y thỏa mãn x^2 + y^2 - 4x + 6y + 4 + căn bậc hai (y^2 + 6y + 10) = căn bậc hai(6 + 4x - x^2)

Câu hỏi :

Cho hai số thực x,y thỏa mãn x2+y24x+6y+4+y2+6y+10=6+4xx2. Gọi M,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức T=x2+y2a.  Có bao nhiêu giá trị nguyên thuộc đoạn 10;10  của tham số aa để M2m ?


A.17.



B.16.


C.15.

D.18.

* Đáp án

* Hướng dẫn giải

Media VietJack

Ta có  x2+y24x+6y+4+y2+6y+10=6+4xx2

x2+y24x+6y+4+y2+6y+106+4xx2=0x2+y24x+6y+4+y2+6y+106+4xx2y2+6y+10+6+4xx2y2+6y+10+6+4xx2=0

x2+y24x+6y+4+y2+6y+1064x+x2y2+6y+10+6+4xx2=0x2+y24x+6y+4+x2+y24x+6y+4y2+6y+10+6+4xx2=0

x2+y24x+6y+41+1y2+6y+10+6+4xx2=0

1+1y2+6y+10+6+4xx2>0

x22+y+32=9

Phương trình x22+y+32=9 là phương trình đường tròn (C) tâm I(2;−3) và bán kính R=3.

Gọi Nx;yC  ta suy ra ON=x2+y2 suy ra T=ONa

Gọi A,B là giao điểm của đường tròn (C) và đường thẳng OI.

Khi đó OA=OIR=133 và OB=OI+R=13+3

Suy ra 133x2+y213+3

 TH1: Nếu 133a13+3 thì
x2+y2a0minT=0M2ma1;2;3;4;5;6
TH2: Nếu a<133a<13  nên 13+3a>133a , do đó
M=13+3a;m=133a
Vì M2m13+3a2133a
13+3a221362a20139a131a5;4;3;2;1;0
TH3: Nếu a>13+3a>13 nên 13+3a<133a do đó
m=13+3a;M=133a
Vì M2m133a213+3a
133a2213+62a2013+1a13+9a7;8;9;10

Vậy có 16 giá trị của a thỏa mãn đề bài.

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giá trị lớn nhất và giá trị nhỏ nhất của hàm số !!

Số câu hỏi: 42

Copyright © 2021 HOCTAP247