Cho x,y là các số thực thỏa mãn 2^x+y-1 (3^x+y + 1) = 3x + 3y +1. Tìm giá trị nhỏ nhất của biểu thức P = x^2 + xy +y^2

Câu hỏi :

Cho x,y là các số thực thỏa mãn 2x+y1(3x+y+1)=3x+3y+1. Tìm giá trị nhỏ nhất của biểu thức P=x2+xy+y2 .

A. 1

B. 34

C. 34

D. 0

* Đáp án

* Hướng dẫn giải

Ta có: 

2x+y13x+y+1=3x+3y+12x+y3x+y+1=6x+6x+26x+y+2x+y=6x+y+2

Đặt x+y=t  phương trình trở thành 6t+2t=6t+26t+2t6t2=0

Xét hàm số ft=6t+2t6t2 ta có:

f't=6t.ln6+2t.ln26f''t=6tln26+2t.ln22>0   t

Do đó hàm số y=f't đồng biến trên  , suy ra phương trình f′(t)=0f′(t)=0 có nhiều nhất 1 nghiệm.

Suy ra phương trình ft=0  có nhiều nhất 2 nghiệm.

Ta lại có: f(0)=60+206.02=0f(1)=61+216.12=0  do đó phương trình  ft=0 có đúng hai nghiệm t=0,t=1

x+y=0x+y=2

TH1: x+y=0y=x

Thay vào P ta có: P=x2+xy+y2=x20

TH2: x+y=1y=1x

Thay vào P ta có:  

P=x2+x1x+1x2=x2x+1=x122+3434

Vậy giá trị nhỏ nhất của P là 0, đạt được khi x+y=0
Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giá trị lớn nhất và giá trị nhỏ nhất của hàm số !!

Số câu hỏi: 42

Copyright © 2021 HOCTAP247