Chọn ngẫu nhiên một số tự nhiên trong các số tự nhiên có bốn chữ số. Tính

Câu hỏi :

Chọn ngẫu nhiên một số tự nhiên trong các số tự nhiên có bốn chữ số. Tính xác xuất để số được chọn có ít nhất hai chữ số 8 đứng liền nhau.

A. 0,029

B. 0,019

C. 0,021

D. 0,017

* Đáp án

* Hướng dẫn giải

* Gọi số tự nhiên có 4 chữ số là abcd¯a0;0a,b,c,d9;a,b,c,dN
+ a có 9 cách chọn
+ b, c, d có 10 cách chọn
Không gian mẫu có số phần tử là n(Ω) = 9.103
* Gọi A là biến cố số được chọn có ít nhất hai chữ số 8 đứng liền nhau
TH1 : Có hai chữ số 8 đứng liền nhau. Ta chọn 2 chữ số còn lại trong abcd¯
+ 2 chữ số 8 đứng đầu thì có 9.10 = 90 cách chọn 2 chữ số còn lại
+ 2 chữ số 8 đứng ở giữa thì có 8 cách chọn chữ số hàng nghìn và 9 cách chọn chữ số hàng đơn vị nên có :
8.9 = 72 cách chọn.
+ 2 chữ số 8 đứng ở cuối thì có 9 cách chọn chữ số hàng nghìn và 9 cách chọn chữ số hàng trăm nên có 9.9 cách chọn.
Vậy trường hợp này có 90 + 72 + 81 = 243 số.
TH2 : Có ba chữ số 8 đứng liền nhau.
+ 3 chữ số 8 đứng đầu thì có 9 cách chọn chữ số hàng đơn vị
+ 3 chữ số 8 đứng cuối thì có 8 cách chọn chữ số hàng nghìn
Vậy trường hợp này có 9 + 8 = 17 số
TH3 : Có 4 chữ số 8 đứng liền nhau thì có 1 số
Số phần tử của biến cố A là n(A) = 243 + 17 + 1 = 261
Xác suất cần tìm là: PA=nAnΩ=2619.103=0,029
Đáp án cần chọn là: A

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Xác suất của biến cố và các quy tắc tính xác suất !!

Số câu hỏi: 46

Copyright © 2021 HOCTAP247