Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm O.

Câu hỏi :

Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập hợp các tam giác có các đỉnh là các đỉnh của đa giác đều trên. Tính xác suất P để chọn được một tam giác từ tập X là tam giác cân nhưng không phải tam giác đều.

A. 144136

B. 7816

C. 23136

D. 21136

* Đáp án

* Hướng dẫn giải

Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm O.  (ảnh 1)

+) Số phần tử của KGM: nΩ=nX=C183
Gọi A là biến cố: “chọn được một tam giác từ tập X là tam giác cân nhưng không phải tam giác đều”.
Chọn 1 đỉnh bất kì làm đỉnh của tam giác cân, ta lập được 8 tam giác cân + đều.
Có 18 đỉnh như vậy
⇒ Lập được 8.18 = 144 tam giác cân + đều.
Ta lại có số tam giác đều có đỉnh là các đỉnh của đa giác đều 18 đỉnh là 6.
⇒ n(A) = 144 – 6 = 138
Vậy xác suất của biến cố A là: P=PA=136C183=23136
Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Xác suất của biến cố và các quy tắc tính xác suất !!

Số câu hỏi: 46

Copyright © 2021 HOCTAP247