Cho hàm số y = f(x) có đạo hàm liên tục trên R và đồ thị hàm số y = f(x) như hình vẽ bên. Tìm số điểm cực trị

Câu hỏi :

Cho hàm số y=fx   có đạo hàm liên tục trên   và đồ thị hàm số y=fx  như hình vẽ bên. Tìm số điểm cực trị của hàm số y=2019f(f(x)1)

Media VietJack


A.13



B.11


C.10

D.12

* Đáp án

* Hướng dẫn giải

Media VietJack

Ta có:

y=2019ffx1y'=2019ffx1.f'fx1.f'xln2019

f'(f(x)1)=0f(x)1=1f(x)1=1f(x)1=3f(x)1=6f(x)=0f(x)=2f(x)=4f(x)=7

f'fx1=0 có tất cả: 2+5+2+1=10 nghiệm

(trong đó, có các nghiệm x=3,  x=6 là nghiệm kép, còn lại là nghiệm đơn)

f'(x)=0x=1x=1x=3x=6

y'=2019ffx1.f'fx1.f'x=0 có 12 nghiệm phân biệt, trong đó, x=3,  x=6 là nghiệm bội 3, còn lại là nghiệm đơn.

 

Do đó, số điểm cực trị của hàm số y=2019ffx1 là 12.

Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Cực trị của hàm số !!

Số câu hỏi: 70

Copyright © 2021 HOCTAP247