Trang chủ Đề thi & kiểm tra Khác Mặt cầu và mặt phẳng !! Trong không gian với hệ trục tọa độ Oxyz, cho...

Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P):2x-y-2z-2=0

Câu hỏi :

Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P):2xy2z2=0 và mặt phẳng (Q):2xy2z+10=0 song song với nhau. Biết A(1;2;1) là điểm nằm giữa hai mặt phẳng (P) và (Q). Gọi (S) là mặt cầu qua A và tiếp xúc với cả hai mặt phẳng (P) và (Q). Biết rằng khi (S) thay đổi thì tâm của nó luôn nằm trên một đường tròn. Tính bán kính r của đường tròn đó


A. r=253



B. r=423


C. r=223

D. r=53

* Đáp án

* Hướng dẫn giải

Media VietJack

Bước 1: Tính d((P),(Q))

Ta thấy M(1;0;0) là một điểm thuộc (P)

P//Q nên d((P),(Q))=d(M,(Q))=|2+10|22+(1)2+(2)2=4

Bước 2: Giả sử I(a;b;c) là tâm của (S). Chứng minh I luôn thuộc mặt phẳng (R)

Giả sử I(a;b;c) là tâm của (S). Vì (S) tiếp xúc với cả (P) và (Q) nên bán kính mặt cầu (S) là

R=d((P),(Q))2=42=2

Do đó IA=2 nên I luôn thuộc mặt cầu (T) tâm A, bán kính 2

Ngoài ra,

d(I,(P))=d(I,(Q))|2ab2c2|22+(1)2+(2)2=|2ab2c+10|22+(1)2+(2)2

|2ab2c2|=|2ab2c+10|

2ab2c+4=0.

Do đó, I luôn thuộc mặt phẳng (R):2xy2z+4

Bước 3: Gọi H là hình chiếu vuông góc của A lên (R).Tính HI và tính bán kính r

Gọi H là hình chiếu vuông góc của A lên (R). Vì A,

Ta cóAH=d(A,(R))=|2.122.1+4|22+(1)2+(2)2=23

AH(R)AHHI,do đó ΔAHI vuông tại H nên

HI=AI2AH2=22232=423

Vậy I luôn thuộc đường tròn tâm H, nằm trên mặt phẳng (R), bán kínhr=423

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Mặt cầu và mặt phẳng !!

Số câu hỏi: 21

Copyright © 2021 HOCTAP247