Cho ∆MNP cân tại M có G là trọng tâm. Gọi I là điểm nằm trong ∆MNP và cách đều ba cạnh của tam giác đó

Câu hỏi :

Cho ∆MNP cân tại M có G là trọng tâm. Gọi I là điểm nằm trong ∆MNP và cách đều ba cạnh của tam giác đó. Gọi H, K lần lượt là hình chiếu của I lên MN, MP. Khẳng định nào sau đây đúng?


A. IH > IK;


B. Ba điểm M, G, I thẳng hàng;

C. IH < IK;

D. Ba điểm M, G, I không thẳng hàng.

* Đáp án

* Hướng dẫn giải

Đáp án đúng là: B

Media VietJack

Vì I nằm trong tam giác và cách đều ba cạnh của ∆MNP.

Nên IH = IK.

Do đó đáp án A, C sai.

Vì I nằm trong tam giác và cách đều ba cạnh của ∆MNP.

Nên I là giao điểm của ba đường phân giác của ∆MNP.

Do đó MI là đường phân giác của ∆MNP.

Gọi E là giao điểm của MI và NP.

Xét ∆MNE và ∆MPE, có:

ME là cạnh chung.

MN = MP (do ∆MNP cân tại M).

NME^=PME^ (ME là đường phân giác của ∆MNP).

Do đó ∆MNE = ∆MPE (c.g.c)

Suy ra NE = PE (cặp cạnh tương ứng)

Suy ra E là trung điểm của NP.

Khi đó ta có ME là đường trung tuyến của ∆MNP hay MI là đường trung tuyến của ∆MNP.

∆MNP có G là trọng tâm.

Suy ra G ∈ MI.

Khi đó ba điểm M, G, I thẳng hàng.

Do đó đáp án B đúng, đáp án D sai.

Vậy ta chọn đáp án B.

Copyright © 2021 HOCTAP247