Cho ∆ABC có góc B lớn hơn góc C . Từ đỉnh A, kẻ đường cao AH và đường phân giác AD của ∆ABC. Số đo góc HAD bằng:

Câu hỏi :

Cho ∆ABC có B^>C^. Từ đỉnh A, kẻ đường cao AH và đường phân giác AD của ∆ABC. Số đo HAD^ bằng:

A. B^C^

B. B^+C^2

C. B^+C^

D. B^C^2

* Đáp án

* Hướng dẫn giải

Đáp án đúng là: D

Media VietJack

∆ABC có: BAC^+ABC^+ACB^=180° (định lí tổng ba góc của tam giác)

Suy ra BAC^=180°ABC^ACB^.

Vì AD là đường phân giác của ∆ABC.

Nên BAD^=CAD^=BAC^2=180°ABC^ACB^2.

∆ABH vuông tại H: ABH^+BAH^=90°.

Suy ra BAH^=90°ABC^.

Ta có HAD^=BAD^BAH^

=180°ABC^ACB^290°ABC^

=180°2ABC^2ACB^290°+ABC^

=90°+ABC^2ACB^290°

=ABC^ACB^2=B^C^2.

Vì vậy HAD^=B^C^2.

Vậy ta chọn đáp án D.

Copyright © 2021 HOCTAP247