Chứng tỏ rằng: Trong ba số tự nhiên liên tiếp, có một số chia hết cho 3

Câu hỏi :

Chứng tỏ rằng: Trong ba số tự nhiên liên tiếp, có một số chia hết cho 3.

* Đáp án

* Hướng dẫn giải

Gọi ba số tự nhiên liên tiếp là a, a + 1, a + 2

Nếu a chia hết cho 3 thì bài toán được chứng minh

Nếu a không chia hết cho 3 thì a = 3k + 1 hoặc a = 3k + 2 (k ∈ N)

Nếu a = 3k + 1 thì a + 2 = 3k + 1 + 2 = 3k + 3 ⋮ 3

(vì 3k ⋮ 3 và 3 ⋮ 3 nên 3k + 3 ⋮ 3)

Nếu a = 3k + 2 thì a + 1 = 3k + 2 + 1 = 3k + 3 ⋮ 3

(vì 3k ⋮ 3 và 3 ⋮ 3 nên 3k + 3 ⋮ 3)

Vậy trong ba số tự nhiên liên tiếp, có một số chia hết cho 3

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải Sách Bài Tập Toán 6 Tập 1 !!

Số câu hỏi: 1089

Copyright © 2021 HOCTAP247