Chứng tỏ rằng lấy một số có hai chữ số, cộng với số gồm hai chữ

Câu hỏi :

Chứng tỏ rằng lấy một số có hai chữ số, cộng với số gồm hai chữ số ấy viết theo thứ tự ngược lại, ta luôn luôn được một số chia hết cho 11 ( chẳng hạn 37 + 73 = 110, chia hết cho 11)

* Đáp án

* Hướng dẫn giải

Gọi số tự nhiên có hai chữ số là ab(a ≠0)

Số viết theo thứ tự ngược lại của ab là ba

Ta có: ab = 10a + b ; ba = 10b + a

Do đó: abba= (10a + b) + (10b + a) = 11a + 11b = 11.(a + b)

Vì 11.(a + b) ⋮ 11 nên ab + ba luôn chia hết cho 11

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải Sách Bài Tập Toán 6 Tập 1 !!

Số câu hỏi: 1089

Copyright © 2021 HOCTAP247