Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, kẻ CE

Câu hỏi :

Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm của BD và CE. Chứng minh rằng AK là tia phân giác của góc A.

* Đáp án

* Hướng dẫn giải

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Xét ΔADB vuông tại D và ΔAEC vuông tại E, ta có:

AB = AC (giả thiết)

∠(BAC) chung

⇒ ΔADB = ΔAEC (cạnh huyền, góc nhọn)

⇒ AD = AE (hai cạnh tương ứng)

Xét ΔADK vuông tại D và ΔAEK vuông tại E có:

AD = AE (chứng minh trên)

AK cạnh chung

⇒ ΔADK = ΔAEK (cạnh huyền, cạnh góc vuông)

⇒ ∠(DAK) = ∠(EAK) (hai góc tương ứng)

Vậy AK là tia phân giác của góc BAC.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Sách bài tập Toán 7 Tập 1 !!

Số câu hỏi: 795

Copyright © 2021 HOCTAP247