Tìm x, biết rằng : \({1 \over {1.3}} + {1 \over {3.5}} + ... + {1 \over {x\left( {x + 2} \right)}} = {{20} \over {41}}.\)

Câu hỏi :

Tìm x, biết : \({1 \over {1.3}} + {1 \over {3.5}} + ... + {1 \over {x\left( {x + 2} \right)}} = {{20} \over {41}}.\)

A. x = 37

B. x = 38

C. x = 39

D. x = 40

* Đáp án

C

* Hướng dẫn giải

\(\eqalign{  &{1 \over {1.3}} + {1 \over {3.5}} + ... + {1 \over {x(x + 2)}} = {{20} \over {41}}  \cr  & {1 \over 2}\left[ {{2 \over {1.3}} + {2 \over {3.5}} + {2 \over {5.7}} + ... + {2 \over {(x - 2).x}} + {2 \over {x(x + 2)}}} \right] = {{20} \over {41}}  \cr  & {1 \over 2}\left( {1 - {1 \over 3} + {1 \over 3} - {1 \over 5} + {1 \over 5} - {1 \over 7} + ... + {1 \over {x - 2}} - {1 \over x} + {1 \over x} - {1 \over {x + 2}}} \right) = {{20} \over {41}}  \cr  & {1 \over 2}\left( {1 - {1 \over {x + 2}}} \right) = {{20} \over {41}} \Leftrightarrow 1 - {1 \over {x + 2}} = {{20} \over {41}}:{1 \over 2} \Leftrightarrow 1 - {1 \over {x + 2}} = {{40} \over {41}} \Leftrightarrow {1 \over {x + 2}} = 1 - {{40} \over {41}}  \cr  & {1 \over {x + 2}} = {1 \over {41}} \Leftrightarrow x + 2 = 41 \Leftrightarrow x = 39. \cr} \)

Copyright © 2021 HOCTAP247