1.Giả sử p là số nguyên tố và p = 30k + r (0 < r < 30)
Nếu r là hợp số thì r co ước nguyên tố q = 2, 3, 5
Nhưng với q = 3, 3, 5 thì p lần lượt chia hết cho 2, 3, 5 vô lí . Vậy r = 1 hoặc r là số nguyên tố.
Khi chia cho 60 thì kết quả không còn đúng nữa
Chẳng hạn p = 109 = 60.1 + 49 ( 49 là hợp số )
2. Số nguyên tố p khi chia cho 30 chỉ có thể dư là 1, 7, 11, 13, 17, 19, 23, 29
Với r = 1, 11, 19, 29 thì p2 1 (mod 30 )
Với r = 7, 13, 17, 23 thì p2 19 (mod 30 )
Suy ra p4 1 (mod 30 )
Giả sử p1, p2,…, pn là các số nguyen tố lớn hơn 5
Khi đó
(mod 30)
Suy ra p = 30k + n là số nguyên tố nên (n, 30 ) = 1
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247