Chứng minh rằng trong 15 số tự nhiên lớn hơn 1 không vượt quá 2004

Câu hỏi :

Chứng minh rằng trong 15 số tự nhiên lớn hơn 1 không vượt quá 2004 và đôi một nguyên tố cùng nhau Tìm được một số là số nguyên tố.

* Đáp án

* Hướng dẫn giải

Giả sử n1, n2, …n15 là các số thoả món yờu cầu bài toỏn. Giả sử tất cả chỳng là hợp số. Gọi pi là ước nguyên tố nhỏ nhất của ni (i = 1, 2, …, 15).

Gọi p là số lớn nhất trong các số  p1, p2, …,p15

Do các số n1, n2, …n15  là đôi nguyên tố cùng nhau nên các số  p1, p2, …,p15  khỏc nhau tất cả.

Số nguyên tố thứ 15 là số 47 (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 ) ta có p47 . Đối  với số n có ước nguyên tố nhỏ nhất là p thì pn  suy ra  np2 472>2004 (vụ lớ)

Vậy trong 15 số  n1, n2, …n15  ta Tìm được một số nguyên tố.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập về số nguyên tố - tổ hợp số !!

Số câu hỏi: 45

Copyright © 2021 HOCTAP247