Chứng minh rằng: Có duy nhất bộ ba số tự nhiên lẻ liên tiếp đều

Câu hỏi :

Chứng minh rằng: Có duy nhất bộ ba số tự nhiên lẻ liên tiếp đều là số nguyên tố

* Đáp án

* Hướng dẫn giải

Ta đã biết ba số tự nhiên lẻ liên tiếp là: 3,5,7. Ta chứng minh bộ ba này là duy nhất.

Thật vậy, giả sử có ba số nguyên tố lẻ liên tiếp nhau là: a;a+2;a+4.

Vì a là số nguyên tố lớn hơn 3 nên a không chia hết cho 3. Vậy a có dạng: a = 3k+1; 3k+2 (kN)

+ Nếu a = 3k+1 thì a+2 = 3k+3 > 3 và chia hết cho 3 => Hợp số.

+ Nếu a = 3k+2 thì a + 4 = 3k+6 > 3 và chia hết cho 3 => Hợp số.

=>Điều giả sử sai. Vậy có duy nhất bộ ba số tự  nhiên lẻ liên tiếp là số nguyên tố

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Số nguyên tố, hợp số !!

Số câu hỏi: 45

Copyright © 2021 HOCTAP247