Cho số tự nhiên A bằng a mũ x b mũ y c mũ z trong đó a,b,c là các số nguyên tố đôi

Câu hỏi :

Cho số tự nhiên A =  axbycz trong đó a,b,c là các số nguyên tố đôi một khác nhau, còn x, y, z là các số tự nhiên khác 0. Chứng minh rằng số ước của A được tính bởi công thức: (x+1)(y+1)(z+1)

* Đáp án

* Hướng dẫn giải

Số ước của A chỉ chứa thừa số nguyên tố là x thừa số, chỉ chứa thừa số nguyên tố b là y thừa số, chỉ chứa thừa số nguyên tố c là z thừa số, chỉ chứa thừa số nguyên tố ab là xy thừa số, chỉ chứa thừa số nguyên tố ac là xz thừa số, chỉ chứa thừa số nguyên tố bc là yz thừa số, chỉ chứa thừa số nguyên tố abc là xyz thừa số. Vì A là ước của chính nó, do đó số ước của A bằng:

x+y+z+xy+yz+zx+xyz+1 = x(z+1)+y(z+1)+xy(z+1)+z+1 = (z+1)(x+y+xy+1)

= (z+1)[(x+1)+y(x+1)] = (z+1)(y+1)(x+1)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Số nguyên tố, hợp số !!

Số câu hỏi: 45

Copyright © 2021 HOCTAP247