Bài 143 trang 56 SGK Toán 6 tập 1

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Tìm số tự nhiên \(a\) lớn nhất, biết rằng \(420\) \(\vdots\) \(a\) và \(700\) \(\vdots\) \(a\).

Hướng dẫn giải

Ta đi tìm ƯCLN của 2 số 420 và 700

Muốn tìm ƯCLN của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước như sau:

Bước 1: Phân tích mỗi số ra thừa số nguyên tố.

Bước 2: Chọn ra các thừa số nguyên tố chung.

Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là ƯCLN phải tìm

Lời giải chi tiết

Theo đầu bài \(420\) \(\vdots\) \(a\) nên \(a\) là ước của \(420\).

                    \(700\) \(\vdots\) \(a\) nên \(a\) là ước của \(700\)

Do đó \(a\) là ước chung của \(420\) và \(700\)

Mặt khác, theo đầu bài \(a\) lớn nhất nên \(a\) là ước chung lớn nhất của \(420\) và \(700\).

Ta có: 

$$\eqalign{
& 420 = {2^2}.3.5.7 \cr
& 700 = {2^2}{.5^2}.7 \cr} $$

\(Ư CLN(420,700)=2^2.5.7=140\)

Vậy \(a=140\)

Copyright © 2021 HOCTAP247