Bài 1. Làm tính chia:
a) \({\left( { - {x^2}{y^5}} \right)^3}:{\left( {2{x^2}y} \right)^2}\)
b) \( - {1 \over 3}{m^3}{n^2}{p^2}:\left( {{2 \over 3}{m^2}{n^2}p} \right)\)
c) \({\left( { - 4{a^3}{b^2}} \right)^2}:{\left( {8{a^2}b} \right)^2}\)
Bài 3. Tìm số tự nhiên n để phép chia sau là phép chia hết: \(4{x^n}{y^{n + 1}}:3{x^4}{y^6}.\)
Bài 1.
a) \({\left( { - {x^2}{y^5}} \right)^3}:{\left( {2{x^2}y} \right)^2}\)
\(= \left( { - {x^6}{y^{15}}} \right):\left( {4{x^4}{y^2}} \right)\)
\(= - {1 \over 4}.{{{x^6}} \over {{x^2}}}.{{{y^{15}}} \over {{y^2}}} = - {1 \over 4}{x^2}{y^{13}}.\)
b) \( - {1 \over 3}{m^3}{n^2}{p^2}:\left( {{2 \over 3}{m^2}{n^2}p} \right) \)
\(= - {1 \over 2}.{{{m^3}} \over {{m^2}}}.{{{p^2}} \over p} = - {1 \over 2}mp.\)
c) \({\left( { - 4{a^3}{b^2}} \right)^2}:{\left( {8{a^2}b} \right)^2}\)
\(= \left( {16{a^6}{b^4}} \right):\left( {64{a^4}{b^2}} \right) \)
\(= {{16} \over {64}}.{{{a^6}} \over {{a^4}}}.{{{b^4}} \over {{b^2}}} = {1 \over 4}{a^2}{b^2}.\)
Bài 2. Ta có:
\( - {3 \over 4}{a^5}{b^3}{c^2}:\left( { - {3 \over 2}{a^2}{b^2}c} \right) \)
\(= {1 \over 2}.{{{a^5}} \over {{a^2}}}.{{{b^3}} \over {{b^2}}}.{{{c^2}} \over c} = {1 \over 2}{a^3}bc.\)
Thay \(a = - 2;b = 3;c = {1 \over 2},\) ta được: \({1 \over 2}.{\left( { - 2} \right)^2}.3.{1 \over 2} = - 6\)
Bài 3. Để phép chia là phép chia hết thì:
\(\left\{ \matrix{ n \ge 4 \hfill \cr n + 1 \ge 6 \hfill \cr n \in N \hfill \cr} \right. \Rightarrow \left\{ \matrix{ n \ge 4 \hfill \cr n \ge 5 \hfill \cr n \in N \hfill \cr} \right.\)
\(\Rightarrow \left\{ \matrix{ n \ge 5 \hfill \cr n \in N \hfill \cr} \right.\)
Copyright © 2021 HOCTAP247