Bài 1 trang 99 SGK Đại số 10

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Biểu diễn hình học tập nghiệm của các bất phương trình bậc nhất hai ẩn sau:

a) \(- x + 2 + 2(y - 2) < 2(1 - x)\);                

b) \(3(x - 1) + 4(y - 2) < 5x - 3\).

Hướng dẫn giải

Quy tắc thực hành biểu diễn hình học tập nghiệm (hay biểu diễn miền nghiệm) của bất phương trình \(ax + by \le c\left( {ax + by \ge c} \right)\)

Bước 1: Trên mặt phẳng tọa độ Oxy, vẽ đường thẳng (d): ax + by = c.

Bước 2: Lấy một điểm \(M\left( {{x_0};{y_0}} \right)\) không thuộc (d) (ta thường lấy gốc tọa độ).

Bước 3: Tính \(a{x_0} + b{y_0}\) và so sánh  \(a{x_0} + b{y_0}\) với c.

Bước 4: Kết luận:

+) Nếu \(a{x_0} + b{y_0} < c\) thì nửa mặt phẳng bờ (d) chứa M là miền nghiệm của \(a{x_0} + b{y_0} \le c\).

+) Nếu \(a{x_0} + b{y_0} > c\) thì nửa mặt phẳng bờ (d) không chứa M là miền nghiệm của \(a{x_0} + b{y_0}  \ge  c\).

Lời giải chi tiết

a) \(- x + 2 + 2(y - 2) < 2(1 - x) \)

\(\Leftrightarrow  - x + 2 + 2y - 4 < 2 - 2x \)

\(\Leftrightarrow x - 4 + 2y < 0 \Leftrightarrow  y < -\frac{x}{2}+2.\)

Tập nghiệm của bất phương trình là: 

\(T = \left\{ {(x;y)|x \in\mathbb R;y <  - {x \over 2} + 2} \right\}\)

Để biểu diễn tập nghiệm \(T\) trên mặt phẳng tọa độ, ta thực hiện:

+ Vẽ đường thẳng \((d): y= -\frac{x}{2}+2.\)

+ Lấy điểm gốc tọa độ \(O(0; 0)\) \(\notin (d)\).

Ta thấy: \(0 < -\frac{1}{2} - 0 + 2\). Chứng tỏ \((0; 0)\) là một nghiệm của bất phương trình. Vậy nửa mặt phẳng bờ là đường thẳng \((d)\) (không kể bờ) chứa gốc \(O(0; 0)\) là tập hợp các điểm biểu diễn tập nghiệm của bất phương trình đã cho (nửa mặt phẳng không bị gạch sọc)

b) \(3(x - 1) + 4(y - 2) < 5x - 3\)

\(\eqalign{
& \Leftrightarrow 3x - 3 + 4y - 8 - 5x + 3 < 0 \cr
& \Leftrightarrow - 2x + 4y - 8 < 0 \cr
& \Leftrightarrow x - 2y + 4 > 0 \cr} \)

Tập nghiệm của bất phương trình là: 

\(T = \left\{ {(x;y)|x,y \in\mathbb R;x - 2y > -4} \right\}\)

+) Vẽ đường thẳng \((\Delta): x-2y+4=0\)

+) Lấy điểm \(O(0;0)\) \(\notin (\Delta)\)

Ta thấy \(0-2.0+4=4>0\). Chứng tở \((0;0)\) là một nghiệm của bất phương trình. Vậy nửa mặt phẳng bờ là đường thẳng \((\Delta)\) (không kể bờ) chứa gốc \(O(0; 0)\) là tập hợp các điểm biểu diễn tập nghiệm của bất phương trình đã cho (nửa mặt phẳng không bị gạch sọc)

Copyright © 2021 HOCTAP247