Một hình bình hành có hai cạnh nằm trên hai đường thẳng x + 3y - 6 = 0 và 2x - 5y - 1 = 0. Biết hình bình hành đó có tâm đối xứng là I(3, 5). Hãy viết phương trình hai cạnh còn lại của hình bình hành đó.
Giả sử hình bình hành ABCD có tâm I
\(\eqalign{
& AB:\,\,x + 3y - 6 = 0 \cr
& AD:\,\,2x - 5y - 1 = 0 \cr} \)
Tọa độ của A là nghiệm của hệ
\(\left\{ \matrix{
x + 3y - 6 = 0 \hfill \cr
2x - 5y - 1 = 0 \hfill \cr} \right.\,\,\, \Leftrightarrow \,\,\,\left\{ \matrix{
x = 3\, \hfill \cr
y = 1 \hfill \cr} \right.\)
Vậy \(A(3 ; 1)\).
I là trung điểm của AC nên
\(\left\{ \matrix{
{x_I} = {1 \over 2}({x_A} + {x_C}) \hfill \cr
{y_I} = {1 \over 2}({y_A} + {y_C}) \hfill \cr} \right.\,\,\,\, \Leftrightarrow \,\,\left\{ \matrix{
{x_C} = 2{x_I} - {x_A} = 3 \hfill \cr
{y_C} = 2{y_I} - {y_A} = 9 \hfill \cr} \right.\)
Vậy \(C(3 ; 9)\).
BC là đường thẳng qua C và song song với AD nên BC có phương trình:
\(2(x - 3) - 5(y - 9) = 0\,\, \Leftrightarrow \,\,2x - 5y + 39 = 0\)
CD là đường thẳng qua C và song song với AB nên CD có phương trình:
\(1(x - 3) + 3(y - 9) = 0\,\, \Leftrightarrow \,\,x + 3y - 30 = 0\)
Vậy hai cạnh còn lại của hình bình hành là
\(2x - 5y + 39 = 0\) và \(x + 3y - 30 = 0\)
Copyright © 2021 HOCTAP247