Bài 4 trang 169 SGK Đại số và Giải tích 11

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Tìm đạo hàm của các hàm số sau:

\(\begin{array}{l}
a)\,\,y = \left( {9 - 2x} \right)\left( {2{x^3} - 9{x^2} + 1} \right)\\
b)\,\,y = \left( {6\sqrt x - \frac{1}{{{x^2}}}} \right)\left( {7x - 3} \right)\\
c)\,\,y = \left( {x - 2} \right)\sqrt {{x^2} + 1} \\
d)\,y = {\tan ^2}x - {\cot}{x^2}\\
e)\,\,y = \cos \frac{x}{{1 + x}}
\end{array}\)

Hướng dẫn giải

Sử dụng các quy tắc tính đạo hàm của tích, thương, quy tắc tính đạo hàm hàm số hợp và bảng đạo hàm cơ bản.

Lời giải chi tiết

\(\begin{array}{l}
a)\,\,y = \left( {9 - 2x} \right)\left( {2{x^3} - 9{x^2} + 1} \right)\\
\Rightarrow y' = - 2\left( {2{x^3} - 9{x^2} + 1} \right) + \left( {9 - 2x} \right)\left( {6{x^2} - 18x} \right)\\
y' = - 4{x^3} + 18{x^2} - 2 + 54{x^2} - 162x - 12{x^3} + 36{x^2}\\
y' = - 16{x^3} + 108{x^2} - 162x - 2\\
b)\,\,y = \left( {6\sqrt x - \frac{1}{{{x^2}}}} \right)\left( {7x - 3} \right)\\
\Rightarrow y' = \left( {\frac{3}{{\sqrt x }} + \frac{2}{{{x^3}}}} \right)\left( {7x - 3} \right) + 7\left( {6\sqrt x - \frac{1}{{{x^2}}}} \right)\\
\,\,\,\,\,\,y' = 21\sqrt x - \frac{9}{{\sqrt x }} + \frac{{14}}{{{x^2}}} - \frac{6}{{{x^3}}} + 42\sqrt x - \frac{7}{{{x^2}}}\\
\,\,\,\,\,\,y' = \frac{{ - 6}}{{{x^3}}} + \frac{7}{{{x^2}}} + 63\sqrt x - \frac{9}{{\sqrt x }}\\
c)\,\,y = \left( {x - 2} \right)\sqrt {{x^2} + 1} \\
\Rightarrow y' = \sqrt {{x^2} + 1} + \left( {x - 2} \right)\frac{x}{{\sqrt {{x^2} + 1} }}\\
\,\,\,\,\,\,y' = \frac{{{x^2} + 1 + {x^2} - 2x}}{{\sqrt {{x^2} + 1} }}\\
\,\,\,\,\,\,y' = \frac{{2{x^2} - 2x + 1}}{{\sqrt {{x^2} + 1} }}\\
d)\,y = {\tan ^2}x - \cot {x^2}\\
\Rightarrow y' = 2\tan x.\frac{1}{{{{\cos }^2}x}} + \frac{{2x}}{{{{\sin }^2}x}}\\
\,\,\,\,\,\,y' = \frac{{2\sin x}}{{{{\cos }^3}x}} + \frac{{2x}}{{{{\sin }^2}x}}\\
e)\,\,y = \cos \frac{x}{{1 + x}}\\
\Rightarrow y' = - \sin \frac{x}{{1 + x}}.\left( {\frac{{1 + x - x}}{{{{\left( {1 + x} \right)}^2}}}} \right)\\
\,\,\,\,\,\,y' = - \frac{1}{{{{\left( {1 + x} \right)}^2}}}.\sin \frac{x}{{1 + x}}
\end{array}\)

Copyright © 2021 HOCTAP247