Câu 45 trang 123 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 45. Cho dãy số (un) xác định bởi

\({u_1} = 2\text{ và }{u_n} = {{{u_{n - 1}} + 1} \over 2}\) với mọi \(n ≥ 2\)

Chứng minh rằng

\({u_n} = {{{2^{n - 1}} + 1} \over {{2^{n - 1}}}}\)   (1)

Với mọi số nguyên dương n.

Hướng dẫn giải

+) Với \(n = 1\), theo giả thiết ta có \({u_1} = 2 = {{{2^{1 - 1}} + 1} \over {{2^{1 - 1}}}}\) . Như vậy (1) đúng khi \(n = 1\).

+) Giả sử (1) đúng khi \(n = k,\; k \in\mathbb N^*\) tức là:

\(u_k={{{2^{k - 1}} + 1} \over {{2^{k - 1}}}}\)

+) Ta chứng minh (1) đúng với \(n=k+1\)

Khi đó, từ hệ thức xác định dãy số (un) ta có:

\({u_{k + 1}} = {{{u_k} + 1} \over 2} = {{{{{2^{k - 1}} + 1} \over {{2^{k - 1}}}} + 1} \over 2} = {{{2^k} + 1} \over {{2^k}}}\)

Nghĩa là (1) đúng với \(n = k + 1\).

Vậy (1) đúng với mọi \(n \in\mathbb N^*\)

Copyright © 2021 HOCTAP247