Câu 21 trang 151 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 21. Áp dụng định nghĩa giới hạn của hàm số, tìm các giới hạn sau :

a.  \(\mathop {\lim }\limits_{x \to - 1} {{{x^2} - 3x - 4} \over {x + 1}}\)

b.  \(\mathop {\lim }\limits_{x \to 1} {1 \over {\sqrt {5 - x} }}\)

Hướng dẫn giải

a. Với \(x ≠ -1\) ta có  \(f\left( x \right) = {{{x^2} - 3x - 4} \over {x + 1}} = {{\left( {x + 1} \right)\left( {x - 4} \right)} \over {x + 1}} = x - 4\)

Với mọi dãy số (xn) trong khoảng \(\mathbb R\backslash \left\{ { - 1} \right\}\) (tức \(x_n≠ -1, ∀n\)) mà \(\lim\, x_n = -1\) ta có :

\(\lim f\left( x_n \right) = \lim \left( {{x_n} - 4} \right) = - 1 - 4 = - 5\)

Vậy  \(\mathop {\lim }\limits_{x \to - 1} {{{x^2} - 3x - 4} \over {x + 1}} = - 5\)

b. Tập xác định của hàm số \(f\left( x \right) = {1 \over {\sqrt {5 - x} }}\) là \(D = (-∞ ; 5)\)

Với mọi dãy (xn) trong khoảng \(\left( { - \infty {\rm{ }};{\rm{ }}5} \right)\backslash \left\{ 1 \right\}\) sao cho  \(\lim\, x_n = 1\), ta có :

\(\lim f\left( {{x_n}} \right) = \lim {1 \over {\sqrt {5 - {x_n}} }} = {1 \over 2}\)

Vậy  \(\mathop {\lim }\limits_{x \to 1}  {1 \over {\sqrt {5 - x} }} = {1 \over 2}\)

Copyright © 2021 HOCTAP247