Câu 24 trang 152 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 24. Tìm các giới hạn sau :

a.  \(\mathop {\lim }\limits_{x \to - \infty } {{3{x^2} - x + 7} \over {2{x^3} - 1}}\)

b.  \(\mathop {\lim }\limits_{x \to - \infty } {{2{x^4} + 7{x^3} - 15} \over {{x^4} + 1}}\)

c.  \(\mathop {\lim }\limits_{x \to + \infty } {{\sqrt {{x^6} + 2} } \over {3{x^3} - 1}}\)

d.  \(\mathop {\lim }\limits_{x \to - \infty } {{\sqrt {{x^6} + 2} } \over {3{x^3} - 1}}\)

Hướng dẫn giải

a.

\(\eqalign{
& \mathop {\lim }\limits_{x \to - \infty } {{3{x^2} - x + 7} \over {2{x^3} - 1}} = \mathop {\lim }\limits_{x \to - \infty } {{{x^3}\left( {{3 \over x} - {1 \over {{x^2}}} + {7 \over {{x^3}}}} \right)} \over {{x^3}\left( {2 - {1 \over {{x^3}}}} \right)}} \cr
& = \mathop {\lim }\limits_{x \to - \infty } {{{3 \over x} - {1 \over {{x^2}}} + {7 \over {{x^3}}}} \over {2 - {1 \over {{x^3}}}}} = {0 \over 2} = 0 \cr} \)

b.

\(\eqalign{
& \mathop {\lim }\limits_{x \to - \infty } {{2{x^4} + 7{x^3} - 15} \over {{x^4} + 1}} = \mathop {\lim }\limits_{x \to - \infty } {{{x^4}\left( {2 + {7 \over x} - {{15} \over {{x^4}}}} \right)} \over {{x^4}\left( {1 + {1 \over {{x^4}}}} \right)}} \cr
& = \mathop {\lim }\limits_{x \to - \infty } {{2 + {7 \over x} - {{15} \over {{x^4}}}} \over {1 + {1 \over {{x^4}}}}} = 2 \cr} \)

c.

\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } {{\sqrt {{x^6} + 2} } \over {3{x^3} - 1}} = \mathop {\lim }\limits_{x \to - \infty } {{{x^3}\sqrt {1 + {2 \over {{x^6}}}} } \over {{x^3}\left( {3 - {1 \over {{x^3}}}} \right)}} \cr
& = \mathop {\lim }\limits_{x \to - \infty } {{\sqrt {1 + {2 \over {{x^6}}}} } \over {3 - {1 \over {{x^3}}}}} = {1 \over 3} \cr} \)

d. Với mọi \(x < 0\), ta có:

\({{\sqrt {{x^6} + 2} } \over {3{x^3} - 1}} = {{\left| x^3 \right|\sqrt {1 + {2 \over {{x^6}}}} } \over {3{x^3} - 1}} = {{ - {x^3}\sqrt {1 + {2 \over {{x^6}}}} } \over {3{x^3} - 1}} = {{ - \sqrt {1 + {2 \over {{x^6}}}} } \over {3 - {1 \over {{x^3}}}}}\)

Do đó :  

\(\mathop {\lim }\limits_{x \to - \infty } {{\sqrt {{x^6} + 2} } \over {3{x^3} - 1}} = \mathop {\lim }\limits_{x \to - \infty } {{ - \sqrt {1 + {2 \over {{x^6}}}} } \over {3 - {1 \over {{x^3}}}}} = - {1 \over 3}\)

Copyright © 2021 HOCTAP247