Trang chủ Lớp 11 Toán Lớp 11 SGK Cũ Bài 5. Giới hạn một bên Câu 33 trang 159 SGK Đại số và Giải tích 11 Nâng cao

Câu 33 trang 159 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho hàm số

\(f\left( x \right) = \left\{ {\matrix{{{x^2} - 2x + 3\,\text{ với }\,x \le 2.} \cr {4x - 3\,\text{ với }\,x > 2} \cr} } \right.\)

Tìm \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right),\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right)\,\text{ và }\,\mathop {\lim }\limits_{x \to 2} f\left( x \right)\) (nếu có).

Hướng dẫn giải

Ta có:

\(\eqalign{
& \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {4x - 3} \right) =4.2-3= 5 \cr
& \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {{x^2} - 2x + 3} \right) =2^2-2.2+3= 3 \cr} \)

Vì \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right)\) nên không tồn tại  \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\)

Copyright © 2021 HOCTAP247