Trang chủ Lớp 11 Toán Lớp 11 SGK Cũ Bài 8. Hàm số liên tục Câu 49 trang 173 SGK Đại số và Giải tích 11 Nâng cao

Câu 49 trang 173 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Chứng minh rằng phương trình :

\({x^2}\cos x + x\sin x + 1 = 0\)

Có ít nhất một nghiệm thuộc khoảng (0 ; π).

Hướng dẫn giải

Hàm số \(f\left( x \right) = {x^2}\cos x + x\sin x + 1\) liên tục trên đoạn \(\left[ {0;\pi } \right],f\left( 0 \right) = 1 > 0,f\left( \pi \right) = 1 - {\pi ^2} < 0.\) Vì \(f(0).f(1) < 0\) nên theo hệ quả của định lí về giá trị trung gian của hàm số liên tục, tồn tại ít nhất một số thực \(c \in (0 ; π)\) sao cho \(f(c) = 0\). Số thực c là một nghiệm của phương trình đã cho.

Copyright © 2021 HOCTAP247