Trang chủ Lớp 11 Toán Lớp 11 SGK Cũ Bài 1. Khái niệm đạo hàm Câu 14 trang 195 SGK Đại số và Giải tích 11 Nâng cao

Câu 14 trang 195 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho hàm số \(y = \left| x \right|\)

a. Chứng minh rằng hàm số đã cho liên tục tại điểm x = 0

b. Tính đạo hàm của hàm số tại x = 0, nếu có.

c. Mệnh đề “Hàm số liên tục tại điểm x0 thì có đạo hàm tại x0 ” đúng hay sai ?

Hướng dẫn giải

a. Ta có: \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \left| x \right| = 0 = f\left( 0 \right)\)

Vậy f liên tục tại x = 0

b. Ta có:

\(\eqalign{  & \mathop {\lim }\limits_{x \to {0^ + }} {{f\left( x \right) - f\left( 0 \right)} \over x} = \mathop {\lim }\limits_{x \to {0^ + }} {{\left| x \right|} \over x} = \mathop {\lim }\limits_{x \to 0} {x \over x} = 1  \cr  & \mathop {\lim }\limits_{x \to {0^ - }} {{f\left( x \right) - f\left( 0 \right)} \over x} = \mathop {\lim }\limits_{x \to {0^ - }} {{\left| x \right|} \over x} = \mathop {\lim }\limits_{x \to 0} {{ - x} \over x} =  - 1 \cr} \)

Do đó không tồn tại \(\mathop {\lim }\limits_{x \to 0} {{f\left( x \right) - f\left( 0 \right)} \over x}\) nên hàm số f không có đạo hàm tại x = 0

c. Mệnh đề sai. Thật vậy, hàm số \(f\left( x \right) = \left| x \right|\) liên tục tại điểm 0 (theo câu a) nhưng không có đạo hàm tại điểm đó (theo câu b).

Copyright © 2021 HOCTAP247