Cho tứ diện ABCD. Gọi M, K lần lượt là trung điểm của BC và AC, N là điểm trên cạnh BD sao cho BN = 2ND. Gọi F là giao điểm của AD và mp(MNK). Trong các mệnh đề sau đây, mệnh đề nào đúng ?
A. AF = FD
B. AF = 2FD
C. AF = 3FD
D. FD = 2AF
Gọi I = MN ∩ CD
⇒ F = KI ∩ AD = AD ∩ (MNK)
Kẻ DL // BC (L ϵ MI)
\({{DL} \over {BM}} = {{DN} \over {BN}} = {1 \over 2} \Rightarrow DL = {1 \over 2}CM\)
⇒ D là trung điểm CI.
Từ đó suy ra F là trọng tâm ΔACI nên AF = 2FD.
Chọn (B)
Copyright © 2021 HOCTAP247