Câu 8 trang 80 SGK Hình học 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho tứ diện đều ABCD có cạnh bằng a. Gọi G là tọng tâm tam giác ABC. Cắt tứ diện bởi mp(GCD) thì diện tích của thiết diện là :

A. \({{{a^2}\sqrt 3 } \over 2}\)

B. \({{{a^2}\sqrt 2 } \over 4}\)

C. \({{{a^2}\sqrt 2 } \over 6}\)

D. \({{{a^2}\sqrt 3 } \over 4}\)

Hướng dẫn giải

Gọi I là trung điểm của AB. Thiết diện cần tìm là ΔCID

Gọi J là trung điểm CD

ΔCID cân nên IJ ⊥ CD ⇒ \({S_{ICD}} = {1 \over 2}IJ.CD\)

Ta có:

\(\eqalign{  & I{J^2} = C{I^2} - C{J^2} = {\left( {{{a\sqrt 3 } \over 2}} \right)^2} - {{{a^2}} \over 4} = {{{a^2}} \over 2}  \cr  &  \Rightarrow IJ = {{a\sqrt 2 } \over 2} \Rightarrow {S_{ICD}} = {1 \over 2}.{{a\sqrt 2 } \over 2}.a = {{{a^2}\sqrt 2 } \over 4} \cr} \)

Chọn (B)

Copyright © 2021 HOCTAP247