a) Định nghĩa: Xét một công việc \(H\).
Giả sử \(H\) có \(k\) phương án \({H_1},{H_2},...,{H_k}\) thực hiện công việc \(H\). Nếu có \({m_1}\)cách thực hiện phương án \({H_1}\), có \({m_2}\) cách thực hiện phương án \({H_2}\),.., có \({m_k}\)cách thực hiện phương án \({H_k}\) và mỗi cách thực hiện phương án \({H_i}\) không trùng với bất kì cách thực hiện phương án \({H_j}\) (\(i \ne j;i,j \in \left\{ {1,2,...,k} \right\}\)) thì có \({m_1} + {m_2} + ... + {m_k}\) cách thực hiện công việc \(H\).
b) Công thức quy tắc cộng
Nếu các tập \({A_1},{A_2},...,{A_n}\) đôi một rời nhau. Khi đó:
\(\left| {{A_1} \cup {A_2} \cup ... \cup {A_n}} \right| = \left| {{A_1}} \right| + \left| {{A_2}} \right| + ... + \left| {{A_n}} \right|\)
a) Định nghĩa: Giả sử một công việc \(H\) bao gồm \(k\) công đoạn \({H_1},{H_2},...,{H_k}\). Công đoạn \({H_1}\) có \({m_1}\) cách thực hiện, công đoạn\({H_2}\) có \({m_2}\) cách thực hiện,…, công đoạn \({H_k}\) có \({m_k}\) cách thực hiện. Khi đó công việc H có thể thực hiện theo \({m_1}.{m_2}...{m_k}\) cách.
b) Công thức quy tắc nhân
Nếu các tập \({A_1},{A_2},...,{A_n}\) đôi một rời nhau. Khi đó:
\(\left| {{A_1} \cap {A_2} \cap ... \cap {A_n}} \right| = \left| {{A_1}} \right|.\left| {{A_2}} \right|.....\left| {{A_n}} \right|\).
Định lí: \({(a + b)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}} \)
\( = C_n^0{a^n} + C_n^1{a^{n - 1}}b + C_n^2{a^{n - 2}}{b^2} + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)
Trong khai triển Newton \({(a + b)^n}\) có các tính chất sau
* Gồm có \(n + 1\) số hạng
* Số mũ của a giảm từ n đến 0 và số mũ của b tăng từ 0 đến n
* Tổng các số mũ của a và b trong mỗi số hạng bằng n
* Các hệ số có tính đối xứng: \(C_n^k = C_n^{n - k}\)
* Số hạng tổng quát : \({T_{k + 1}} = C_n^k{a^{n - k}}{b^k}\)
VD: Số hạng thứ nhất \({T_1} = {T_{0 + 1}} = C_n^0{a^n}\), số hạng thứ k: \({T_{(k - 1) + 1}} = C_n^{k - 1}{a^{n - k + 1}}{b^{k - 1}}\)
a) Định nghĩa: Cho tập \(A\) gồm \(n\) phần tử (\(n \ge 1\)). Khi sắp xếp \(n\) phần tử này theo một thứ tự ta được một hoán vị các phần tử của tập A.
Kí hiệu số hoán vị của n phần tử là \({P_n}\).
b) Số hoán vị của tập n phần tử:
Định lí: Ta có \({P_n} = n!\)
a) Định nghĩa: Cho tập A gồm n phần tử và số nguyên \(k\) với \(1 \le k \le n\). Khi lấy \(k\) phần tử của A và sắp xếp chúng theo một thứ tự ta được một chỉnh hợp chập \(k\) của \(n\) phần tử của A.
b) Số chỉnh hợp
Kí hiệu \(A_n^k\) là số chỉnh hợp chập \(k\) của \(n\) phần tử
Định lí: Ta có \(A_n^k = \frac{{n!}}{{(n - k)!}}\).
Cho tập hợp A gồm n phần tử. Mỗi cách sắp xếp k phần tử của A (1 £ k £ n) được gọi là một chỉnh hợp chập k của n phần tử của tập A.
Số tổ hợp chập k của n phần tử ký hiệu\(C_n^k:\) \(C_n^k = \frac{{n!}}{{k!\left( {n - k} \right)!}}\)
Nhận xét :
i/ Điều kiện để xảy ra hoán vị, chỉnh hợp và tổ hợp là n phần tử phải phân biệt .
ii/ Chỉnh hợp và tổ hợp khác nhau ở chổ là sau khi chọn ra k trong n phần tử thì chỉnh hợp có sắp thứ tự còn tổ hợp thì không.
a) Định nghĩa cổ điển của xác suất:
Cho T là một phép thử ngẫu nhiên với không gian mẫu \(\Omega \) là một tập hữu hạn. Giả sử A là một biến cố được mô ta bằng \({\Omega _A} \subset \Omega \). Xác suất của biến cố A, kí hiệu bởi P(A), được cho bởi công thức
\(P(A) = \frac{{\left| {{\Omega _A}} \right|}}{{\left| \Omega \right|}} = \)\(\frac{{{\rm{So ket qua thuan loi cho A}}}}{{{\rm{So ket qua co the xay ra}}}}\).
Chú ý: \( \bullet \) Xác suất của biến cố A chỉ phụ thuộc vào số kết quả thuận lợi cho A, nên ta đồng nhất \({\Omega _A}\) với A nên ta có : \(P(A) = \frac{{n(A)}}{{n(\Omega )}}\)
\( \bullet \) \(P(\Omega ) = 1,{\rm{ }}P(\emptyset ) = 0,{\rm{ }}0 \le P(A) \le 1\)
b) Định nghĩa thống kê của xác suất
Xét phép thử ngẫu nhiên T và một biến cố A liên quan tới phép thử đó. Nếu tiến hành lặp đi lặp lại N lần phép thử T và thống kê số lần xuất hiện của A
Khi đó xác suất của biến cố A được định nghĩa như sau:
\(P(A) = \)\(\frac{{{\rm{So lan xuat hien cua bien co A}}}}{N}\).
Nếu hai biến cố A và B xung khắc thì \(P(A \cup B) = P(A) + P(B)\)
\( \bullet \) Mở rộng quy tắc cộng xác suất
Cho \(k\) biến cố \({A_1},{A_2},...,{A_k}\) đôi một xung khắc. Khi đó:
\(P({A_1} \cup {A_2} \cup ... \cup {A_k}) = P({A_1}) + P({A_2}) + ... + P({A_k})\).
\( \bullet \) \(P(\overline A ) = 1 - P(A)\)
\( \bullet \) Giải sử A và B là hai biến cố tùy ý cùng liên quan đến một phép thử. Lúc đó: \(P(A \cup B) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\).
\( \bullet \) Ta nói hai biến cố A và B độc lập nếu sự xảy ra (hay không xảy ra) của A không làm ảnh hưởng đến xác suất của B.
\( \bullet \) Hai biến cố A và B độc lập khi và chỉ khi \(P\left( {AB} \right) = P\left( A \right).P\left( B \right)\).
Tổ hợp và Xác suất là khái niệm mà các em đã bước đầu được tìm hiểu ở chương trình THCS. Đến với Đại số và Giải tích 11, các em sẽ được tìm hiểu chi tiết và sâu hơn. Bài học Quy tắc đếm với Quy tắc cộng và Quy tắc nhân sẽ mở đầu cho chương này.
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 11 Ôn tập chương II để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Số hoán vị của n phần tử là:
Câu 9- Câu 23: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 11 Ôn tập chương II sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 11 Cơ bản và Nâng cao.
Bài tập 2.58 trang 86 SBT Toán 11
Bài tập 2.59 trang 86 SBT Toán 11
Bài tập 2.60 trang 86 SBT Toán 11
Bài tập 2.61 trang 87 SBT Toán 11
Bài tập 2.62 trang 87 SBT Toán 11
Bài tập 2.63 trang 87 SBT Toán 11
Bài tập 2.64 trang 87 SBT Toán 11
Bài tập 2.65 trang 87 SBT Toán 11
Bài tập 2.66 trang 87 SBT Toán 11
Bài tập 43 trang 90 SGK Toán 11 NC
Bài tập 44 trang 90 SGK Toán 11 NC
Bài tập 45 trang 90 SGK Toán 11 NC
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Copyright © 2021 HOCTAP247