Bài 4 trang 121 SGK Giải tích 12

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường sau quay quanh trục \(Ox\):

a) \(y = 1 - x^2\), \(y = 0\) ;

b) \(y = cosx, y = 0, x = 0, x = π\) ;

c) \(y = tanx, y = 0, x = 0\), \(x=\frac{\pi }{4}\) ;

Hướng dẫn giải

Cho hình phẳng được giới hạn bởi hai đồ thị hàm số  \(y = f\left( x \right);\;\;y = g\left( x \right) \, \) và hai đường thẳng \(x=a; \, \, x=b \, \, \, (a<b).\) Khi quay hình phẳng trên quanh trục \(Ox\) ta được khối tròn xoay có thể tích được tính bởi công thức:  \(V = \pi \int\limits_a^b {\left| {{f^2}\left( x \right) - {g^2}\left( x \right)} \right|dx} .\)

Lời giải chi tiết

a) Phương trình hoành độ giao điểm của hai đồ thị hàm số là:  \(1 - x^2= 0 ⇔ x = ±1\).

Khi đó thể tích khối tròn xoay cần tìm là :

\(V=\pi \int_{-1}^{1}(1-x^{2})^{2}dx=2\pi \int_{0}^{1}(x^{4}-2x^{2}+1)dx\)

     \(=2\pi \left (\frac{x^{5}}{5}- \frac{2}{3}x^{3}+x \right )|_{0}^{1}=2\pi\left ( \frac{1}{5}-\frac{2}{3}+1 \right )=\frac{16\pi}{15}.\)

b) Thể tích cần tìm là:

\(V= \pi \int_{0}^{\pi }cos^{2}xdx =\frac{\pi }{2}\int_{0}^{\pi}(1+cos2x)dx\)

     \(=\frac{\pi }{2}\left (x+\frac{1}{2}sin2x \right )|_{0}^{\pi }=\frac{\pi }{2}.\pi =\frac{\pi ^{2}}{2}\)

c) Thể tích cần tìm là:

\(V=\pi\int_{0}^{\frac{\pi }{4}}tan^{2}xdx=\pi\int_{0}^{\frac{\pi }{4} }\left (\frac{1}{cos^{2}x}-1 \right )dx\)

     \(=\pi \left (tanx-x \right )|_{0}^{\frac{\pi }{4}}=\pi (1-\frac{\pi }{4})\)

     \(=\frac{\pi(4-\pi)}{4}\).

Copyright © 2021 HOCTAP247