Trong không gian Oxyz cho điểm Mo(1; 2; 3) và hai điểm M1(1 + t; 2 + t; 3 + t), M2(1 + 2t; 2 + 2t; 3 + 2t) di động với tham số t. Hãy chứng tỏ ba điểm Mo,M1,M2 luôn thẳng hàng.
\(\eqalign{
& \overrightarrow {{M_0}{M_1}} = (t,t,t);\,\,\overrightarrow {{M_0}{M_2}} = (2t,2t,2t) \cr
& \Rightarrow \overrightarrow {{M_0}{M_2}} = 2\overrightarrow {{M_0}{M_1}} \cr
& \Rightarrow \overrightarrow {{M_0}{M_2}} \uparrow \uparrow \overrightarrow {{M_0}{M_1}} \cr} \)
⇒ ba điểm Mo, M1, M2 luôn thẳng hàng
Copyright © 2021 HOCTAP247