Bài 3 trang 8 SGK Đại số và Giải tích 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 3. Chứng minh rằng các hàm số sau đây đồng biến trên \(\mathbb R\):

a) \(f\left( x \right) = {x^3} - 6{x^2} + 17x + 4;\) 

b) \(f\left( x \right) = {x^3} + x - \cos x - 4\)

Hướng dẫn giải

a) Tập xác định: \(D =\mathbb R\)

\(f'\left( x \right) = 3{x^2} - 12x + 17 > 0\) với mọi \(x \in \mathbb R\) (vì \(a > 0,\Delta ' < 0\))

Hàm số đồng biến trên \(\mathbb R\).

b) Tập xác định: \(D =\mathbb R\)

\(f'\left( x \right) = 3{x^2} + 1 + \sin x\)

Vì \(1 + \sin x \ge 0\) và \(3{x^2} \ge 0\) nên \(f'\left( x \right) \ge 0\) với mọi \(x \in \mathbb R\), với \(x = 0\) thì \(1 + \sin x = 1 > 0\) nên \(f'\left( x \right) > 0\,\,\,\forall x \in \mathbb R\) do đó hàm số đồng biến trên \(\mathbb R\).

Copyright © 2021 HOCTAP247