Bài 36 trang 35 SGK giải tích 12 nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 36. Tìm các tiệm cận của đồ thị hàm số sau:

\(a)\,\,y = \sqrt {{x^2} - 1} \,\,\);        b) \(y = 2x + \sqrt {{x^2} - 1} \)
c) \(y = x + \sqrt {{x^2} + 1} \) d) \(y = \sqrt {{x^2} + x + 1} \).

Hướng dẫn giải

a) TXĐ: \(D =\mathbb R\backslash ( - \infty ;1{\rm{]}} \cup {\rm{[}}1; + \infty )\)
* Tiệm cận xiên khi \(x \to  + \infty \)
Ta có: \(a = \mathop {\lim }\limits_{x \to  + \infty } {{\sqrt {{x^2} - 1} } \over x} = \mathop {\lim }\limits_{x \to  + \infty } {{x\sqrt {1 - {1 \over {{x^2}}}} } \over x} = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {1 - {1 \over {{x^2}}}}  = 1\)
\(b = \mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} - 1}  - x} \right) = \mathop {\lim }\limits_{x \to  + \infty } {{ - 1} \over {\sqrt {{x^2} - 1}  + x}} = 0\)
Vậy đường thẳng \(y = x\) là tiệm cận xiên của đồ thị khi \(x \to  + \infty \).
* Tiệm cận xiên khi \(x \to  - \infty \)
\(a = \mathop {\lim }\limits_{x \to  - \infty } {{\sqrt {{x^2} - 1} } \over x} = \mathop {\lim }\limits_{x \to  - \infty } {{ - x\sqrt {1 - {1 \over {{x^2}}}} } \over x} =  - \mathop {\lim }\limits_{x \to  - \infty } \sqrt {1 - {1 \over {{x^2}}}}  =  - 1\)
\(b = \mathop {\lim }\limits_{x \to  - \infty } \left( {\sqrt {{x^2} - 1}  - x} \right) = \mathop {\lim }\limits_{x \to  - \infty } {{ - 1} \over {\sqrt {{x^2} - 1}  + x}} = 0\)
Vậy đường thẳng \(y = -x\) là tiệm cận xiên của đồ thị (khi \(x \to  - \infty \)).
b) TXĐ: \(D =\mathbb R\backslash ( - \infty ;1{\rm{]}} \cup {\rm{[}}1; + \infty )\)
* Tiệm cận xiên khi \(x \to  + \infty \)
Ta có: \(a = \mathop {\lim }\limits_{x \to  + \infty } {y \over x} = \mathop {\lim }\limits_{x \to  + \infty } \left( {2 + {{\sqrt {{x^2} + 1} } \over x}} \right) = \mathop {\lim }\limits_{x \to  + \infty } \left( {2 + \sqrt {1 - {1 \over {{x^2}}}} } \right) = 3\)
\(b = \mathop {\lim }\limits_{x \to  + \infty } \left( {y - 3x} \right) = \mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} - 1}  - x} \right) = \mathop {\lim }\limits_{x \to  + \infty } {{ - 1} \over {\sqrt {{x^2} - 1}  + x}} = 0\)
Vậy đường thẳng \(y = 3x\) là tiệm cận xiên của đồ thị (khi \(x \to  + \infty \)).
* Tiệm cận xiên khi \(x \to  - \infty \)
\(a = \mathop {\lim }\limits_{x \to  - \infty } {y \over x} = \mathop {\lim }\limits_{x \to  - \infty } \left( {2 + {{\sqrt {{x^2} + 1} } \over x}} \right) = \mathop {\lim }\limits_{x \to  - \infty } \left( {2 - \sqrt {1 - {1 \over {{x^2}}}} } \right) = 1\)
\(b = \mathop {\lim }\limits_{x \to  - \infty } \left( {y - x} \right) = \mathop {\lim }\limits_{x \to  - \infty } \left( {\sqrt {{x^2} - 1}  + x} \right) = \mathop {\lim }\limits_{x \to  - \infty } {{ - 1} \over {\sqrt {{x^2} - 1}  - x}} = 0\)
Vậy đường thẳng \(y = x\) là tiệm cận xiên của đồ thị (khi \(x \to  - \infty \))
c) TXĐ: \(D =\mathbb R\)
* Tiệm cận xiên khi \(x \to  + \infty \)

\(\eqalign{
& a = \mathop {\lim }\limits_{x \to + \infty } {y \over x} = \mathop {\lim }\limits_{x \to + \infty } \left( {1 + {{\sqrt {{x^2} + 1} } \over x}} \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {1 + \sqrt {1 + {1 \over {{x^2}}}} } \right) = 2 \cr
& b = \mathop {\lim }\limits_{x \to + \infty } \left( {y - 2x} \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 1} - x} \right) = \mathop {\lim }\limits_{x \to + \infty } {1 \over {\sqrt {{x^2} + 1} + x}} = 0 \cr} \)

Đường thẳng \(y = 2x\) là tiệm cận xiên (khi \(x \to  + \infty \))
* Tiệm cận khi \(x \to  - \infty \)
\(\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \left( {x + \sqrt {{x^2} - 1} } \right) = \mathop {\lim }\limits_{x \to  - \infty } {1 \over {x - \sqrt {{x^2} - 1} }} = 0\)
Đường thẳng \(y = 0\) là tiệm cận ngang (khi \(x \to  - \infty \))
d) TXĐ: \(D =\mathbb R\)
* \(a = \mathop {\lim }\limits_{x \to  + \infty } {y \over x} = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {1 + {1 \over x} + {1 \over {{x^2}}}}  = 1\)

\(\eqalign{
& b = \mathop {\lim }\limits_{x \to + \infty } \left( {y - x} \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x + 1} - x} \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{x \to + \infty } {{x + 1} \over {\sqrt {{x^2} + x + 1} + x}} = \mathop {\lim }\limits_{x \to + \infty } {{1 + {1 \over x}} \over {\sqrt {1 + {1 \over x} + {1 \over {{x^2}}}} }+1} = {1 \over 2} \cr} \)

Đường thẳng \(y = x + {1 \over 2}\) là tiệm cận xiên (khi \(x \to  + \infty \))
* \(a = \mathop {\lim }\limits_{x \to  - \infty } {y \over x} = \mathop {\lim }\limits_{x \to  - \infty } {{\sqrt {{x^2} + x + 1} } \over x} = \mathop {\lim }\limits_{x \to  - \infty } {{ - x\sqrt {1 + {1 \over x} + {1 \over {{x^2}}}} } \over x} = \mathop {\lim }\limits_{x \to  - \infty } -\sqrt {1 + {1 \over x} + {1 \over {{x^2}}}}  =  - 1\)
\(b = \mathop {\lim }\limits_{x \to  - \infty } \left( {y + x} \right) = \mathop {\lim }\limits_{x \to  - \infty } \left( {\sqrt {{x^2} + x + 1}  + x} \right) = \mathop {\lim }\limits_{x \to  - \infty } {{x + 1} \over {\sqrt {{x^2} + x + 1}  - x}} = \mathop {\lim }\limits_{x \to  - \infty } {{1 + {1 \over x}} \over { - \sqrt {1 + {1 \over x} + {1 \over {{x^2}}}} }-1} =  - {1 \over 2}\)
Đường thẳng \(y =  - x - {1 \over 2}\) là tiệm cận xiên (khi \(x \to  - \infty \))

Copyright © 2021 HOCTAP247